Maths Workshop
Year 3
Overview

• How can you support Maths teaching at home?
• Curriculum Expectations.
• Example questions.
• Why is it important to learn times tables?
How can you support at home?

- Time
- Measure
- Money
- Times tables
Time – Curriculum Expectations

<table>
<thead>
<tr>
<th>Year</th>
<th>Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.</td>
</tr>
</tbody>
</table>
| 2 | • tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times
• know the number of minutes in an hour and the number of hours in a day. |
| 3 | • read time with increasing accuracy to the nearest minute from an analogue clock, including using Roman numerals from I to XII; record and compare time in terms of seconds, minutes and hours;
• use vocabulary such as o’clock, a.m./p.m., morning, afternoon, noon and midnight
• know the number of seconds in a minute and the number of days in each month, year and leap year
• compare durations of events [for example to calculate the time taken by particular events or tasks]. |
| 4 | • read, write and convert time between analogue and digital 12- and 24-hour clocks
• solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days. |
| 5 | • solve problems involving converting between units of time.
• read and interpret information in timetables. |
Let’s try it

Match the two clocks that show the same time.

Year 3
Let’s try it

These clocks have only one hand, but can you suggest a time that each could be showing?

A

B

C

Explain your reasoning.
Measures – Curriculum Expectations

<table>
<thead>
<tr>
<th>Year</th>
<th>Expectation</th>
</tr>
</thead>
</table>
| 2 | • choose and use standard units to estimate and measure length/height (m/cm); mass (kg/g); temperature (°C); capacity (litres/ml) to the nearest unit, using rulers, scales, thermometers and measuring vessels
• compare and order lengths, mass, volume/capacity |
| 3 | • measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity (l/ml)
• measure the perimeter of simple 2-D shapes |
| 4 | • convert between different units of measure [for example, km to m; hour to minute]
• measure and calculate the perimeter of a rectangle in cm and m |
| 5 | • convert between different units of metric measure (km and m; cm and m; cm and mm; g and kg; l and ml)
• understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
• calculate the area and perimeter of rectangles
• use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling. |
| 6 | • convert measurements from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
• solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places
• convert between miles and kilometres |
How long is the crayon?

Find the total length of route A. Find the total length of route B. How much longer is route A than route B?

Year 3
Ahmed’s ruler is broken. Explain how he can still use it to measure things in the classroom.

What is the difference in length between the pen and the pencil?

A crocodile is 3 times as long as a pig. An elephant is 1.2 m longer than the crocodile. The elephant is 4.2 m long. How long is the pig?
<table>
<thead>
<tr>
<th>Year</th>
<th>Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• recognise and know the value of different denominations of coins and notes</td>
</tr>
</tbody>
</table>
| 2 | • recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value
• find different combinations of coins that equal the same amounts of money
• solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change |
| 3 | • add and subtract amounts of money to give change, using both £ and p in practical contexts |
| 4 | • estimate, compare and calculate different measures, including money in pounds and pence |
| 5 | • use all four operations to solve problems involving money using decimal notation |
Let’s try it

£2.60 + □ = £5.00

If I buy a sandwich for £2.20 and a drink for 90p, how much change do I get from £5?

Ellie buys 2 pencils. She pays with a £2 coin and gets 70p change. How much did each pencil cost?
Let’s try it

Sam and Tom share this money equally. Divide the coins into two equal groups. Could three friends share the money equally?

Explain your reasoning.
Starting in the academic year 2019-20 there will be an online Times Tables Check administered for children in Year 4.

<table>
<thead>
<tr>
<th>Year</th>
<th>Expectation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10, 5 and 2 times tables</td>
<td>$10 \times 4 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$28 \div 2 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\square \div 5 = 9$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How many 2s in 24?</td>
</tr>
<tr>
<td>3</td>
<td>10, 5, 2, 4, 8 and 3 times tables</td>
<td>$8 \times 4 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$16 \div 4 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$21 \div \square = 3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How would you use $5 \times 3 = 15$ to work out 50×3?</td>
</tr>
<tr>
<td>4</td>
<td>10, 5, 2, 4, 8, 3, 6, 9, 7, 11 and 12 times</td>
<td>$7 \times 6 = \square$</td>
</tr>
<tr>
<td></td>
<td>tables</td>
<td>$54 \div 9 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$32 \div \square = 8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.2 \times 8 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$320 \div 4 = \square$</td>
</tr>
<tr>
<td>5 & 6</td>
<td>Application of all times table facts to 12 x</td>
<td>$96 \div 12 = \square$</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>$9^2 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$9,000 \times 12,000 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.7 \times 0.7 = \square$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$540 \div \square = 60$</td>
</tr>
</tbody>
</table>
Why is it important to learn Times Tables?

Being fluent in your times tables is **essential** for success in Mathematics.

Children who can’t recall their times tables struggle in all areas of mathematics, due to cognitive overload.
Why is it important to learn Times Tables?

• Instant Recall with facts is essential so the mind is free to think about concepts.

• Children need to move away from inefficient counting strategies as quickly as possible.
Why is it important to learn Times Tables?

BUT knowing your times tables is so much more than just memorisation. Children aren’t just thinking “I know this fact” but “I know this fact therefore I can work out this...”

13 x 7
well I did 10x 7 which is 70
then added 21 which is 3 x 7
so it’s 91
How do we teach times tables at school?
We introduce multiplication as repeated addition using apparatus and talking about equal groups.

\[3 + 3 + 3 + 3 + 3 + 3 = 18 \]
\[6 \times 3 = 18 \]

There are 18 cubes altogether.
Arrays are used to show the relationship between the times tables.

<table>
<thead>
<tr>
<th>Array</th>
<th>Times Table</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 4</td>
<td>1 x 4 = 4</td>
<td></td>
</tr>
<tr>
<td>2 x 4</td>
<td>2 x 4 = 8</td>
<td></td>
</tr>
<tr>
<td>4 x 4</td>
<td>4 x 4 = 8 + 8 = 16</td>
<td>2 x 4 = 8</td>
</tr>
<tr>
<td>8 x 4</td>
<td>8 x 4 = 16 + 16 = 32</td>
<td>7 x 4 = 20 + 8 = 28</td>
</tr>
<tr>
<td>5 x 4</td>
<td>5 x 4 = 20</td>
<td></td>
</tr>
</tbody>
</table>
How Can I Help at Home?

• Reinforcing the importance of times tables.
• Make it fun!
• Play games from our Times Table Games Ideas sheet.
• Having times tables displayed at home.
• Chanting singing times tables – BBC - Supermovers - Time table songs / Mathletics – Play – Times Tables Toons.
• Ensuring children practise through Times Tables Rock Stars and Mathletics Multiverse.
Times Table Rock Stars

• Each week your child will be concentrating on a times table relevant to their year group.
• They will take a paper test three times a week. They are given three minutes to answer 60 questions.
• Children can practise their times tables at home daily by accessing https://ttrockstars.com/ through a computer or app.
• Constant practice increases speed and accuracy of recall.
• Remember being fluent in your times tables is essential for success in Mathematics.
• Use it or lose it!
Thank you for coming.
Please complete the feedback sheet provided.