Here are some fraction cards.

- Each fraction has 7 as the denominator.
- A is twice as big as B.
- The sum of the cards is 1

What could the cards be?

### My Solution

\[
\frac{A}{7} + \frac{B}{7} + \frac{C}{7} = \frac{3}{7}
\]

\[
\frac{4}{7} + \frac{2}{7} + \frac{1}{7} = \frac{7}{7}
\]

so the cards could be...

\[
A = \frac{4}{7} \quad B = \frac{2}{7} \quad C = \frac{1}{7}
\]
The symbol ✪ means

Double the first number and then subtract the second number

Calculate

\[
\frac{2}{5} \, ✪ \, \frac{3}{5} \]

My Solution

Double \( \frac{2}{5} \) then subtract \( \frac{3}{5} \)

\[
\frac{2}{5} + \frac{2}{5} - \frac{3}{5} = \frac{1}{5}
\]

\[
\frac{2}{5} \, ✪ \, \frac{3}{5} = \frac{1}{5}
\]
Here is a fraction pyramid.

The number above is calculated by adding the two fractions below.

Work out the missing numbers in the pyramids opposite.
Here is a fraction pyramid.

The number above is calculated by adding the two fractions below.

Work out the missing numbers in the pyramids opposite.
This line is \(\frac{3}{20}\) of a metre long.

This line is \(\frac{4}{20}\) metre longer than the line above.

What is the total length of the two lines?

Can you write your answer in cm too?

\[\frac{3}{20} \text{ m} + \frac{3}{20} \text{ m} + \frac{4}{20} \text{ m} = \frac{10}{20} \text{ m}\]

The total length of the two lines is \(\frac{10}{20} \text{ m}\). This is the same as 50 cm.